6 resultados para Molecular Analysis

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we use phylogenetic analyses to assess the putative origin of the Lisbon, Azorean, and Canarian populations. The identification of the origin of these three introduced populations is expected to provide insights into the invasion pattern of this species.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The molecular profiling system was developed using directed terminal-restriction fragment length polymorphism (dT-RFLP) to characterize soil nematode assemblages by relative abundance of feeding guilds and validation by comparison to traditional morphological method. The good performance of these molecular tools applied to soil nematodes assemblages create an opportunity to develop a novel approach for rapid assessment of the biodiversity changes of benthic nematodes assemblages of marine and estuarine sediments. The main aim of this research is to combine morphological and molecular analysis of estuarine nematodes assemblages, to establish a tool for fast assessment of the biodiversity changes within habitat recovery of Zostera noltii seagrass beds; and validate the dT-RFLP as a high-throughput tool to assess the system recovery. It was also proposed to develop a database of sequences related to individuals identified at species level to develop a new taxonomic reference system. A molecular phylogenetic analysis of the estuarine nematodes has being performed. After morphological identification, barcoding of 18S rDNA are being determined for each nematode species and the results have shown a good degree of concordance between traditional morphology-based identification and DNA sequences. The digest strategy developed for soil nematodes is not suitable for marine nematodes. Then five samples were cloned and sequenced and the sequence data was used to design a new dT-RFLP strategy to adapt this tool to marine assemblages. Several solutions were presented by DRAT and tested empirically to select the solution that cuts most efficiently, separating the different clusters. The results of quantitative PCR showed differences in nematode density between two sampling stations according the abundance of the nematode density obtained by the traditional methods. These results suggest that qPCR could be a robust tool for enumeration of nematode abundance, saving time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The application of molecular methods offers an alternative faster than traditional methods based on morphology It is nearly impossible to process all the samples in short period using traditional methods, and the deterioration of marine sediments rapidly occurs The dT-RFLP (directed Terminal-Restriction Fragment Length Polymorphism) allows a rapid assessment of biodiversity changes of nematodes assemblages The use of a not suitable fixing, storage time and DNA extraction could be a limitation in molecular analysis like dT-RFLP and real time PCR.Objetives: the best fixative •the level of DNA degradation over the time •the best DNA extraction method for marine nematodes and suitable for dT-RFLP analysis

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In Europe, the concerns with the status of marine ecosystems have increased, and the Marine Directive has as main goal the achievement of Good Environmental Status (GES) of EU marine waters by 2020. Molecular tools are seen as promising and emerging approaches to improve ecosystem monitoring, and have led ecology into a new era, representing perhaps the most source of innovation in marine monitoring techniques. Benthic nematodes are considered ideal organisms to be used as biological indicator of natural and anthropogenic disturbances in aquatic ecosystems underpinning monitoring programmes on the ecological quality of marine ecosystems, very useful to assess the GES of the marine environment. dT-RFLP (directed Terminal-Restriction Fragment Length Polymorphism) allows to assess the diversity of nematode communities, but also allows studying the functioning of the ecosystem, and combined with relative real-time PCR (qPCR), provides a high-throughput semi-quantitative characterization of nematode communities. These characteristics make the two molecular tools good descriptors for the good environmental status assessment. The main aim of this study is to develop and optimize the dT-RFLP and qPCR in Mira estuary (SW coast, Portugal). A molecular phylogenetic analysis of marine and estuarine nematodes is being performed combining morphological and molecular analysis to evaluate the diversity of free-living marine nematodes in Mira estuary. After morphological identification, barcoding of 18S rDNA and COI genes are being determined for each nematode species morphologically identified. So far we generated 40 new sequences belonging to 32 different genus and 17 families, and the study has shown a good degree of concordance between traditional morphology-based identification and DNA sequences. These results will improve the assessment of marine nematode diversity and contribute to a more robust nematode taxonomy. The DNA sequences are being used to develop the dT-RFLP with the ability to easily process large sample numbers (hundreds and thousands), rather than typical of classical taxonomic or low throughput molecular analyses. A preliminary study showed that the digest enzymes used in dT-RFLP for terrestrial assemblages separated poorly the marine nematodes at taxonomic level for functional group analysis. A new digest combination was designed using the software tool DRAT (Directed Terminal Restriction Analysis Tool) to distinguished marine nematode taxa. Several solutions were provided by DRAT and tested empirically to select the solution that cuts most efficiently. A combination of three enzymes and a single digest showed to be the best solution to separate the different clusters. Parallel to this, another tool is being developed to estimate the population size (qPCR). An improvement in qPCR estimation of gene copy number using an artificial reference is being performed for marine nematodes communities to quantify the abundance. Once developed, it is proposed to validate both methodologies by determining the spatial and temporal variability of benthic nematodes assemblages across different environments. The application of these high-throughput molecular approaches for benthic nematodes will improve sample throughput and their implementation more efficient and faster as indicator of ecological status of marine ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The occurrence of Bursaphelenchus species in the Czech Republic is poorly known, the first report of the genus being made by Kubátová et al. (2000) who reported the association of B. eremus with the hyphomycetous microfungus, Esteya vermicola, and the bark beetle, Scolytus intricatus, collected from Quercus robur, in central Bohemia. To date, four other species have been reported from the country, namely B. fungivorus (Braasch et al., 2002), B. hofmanni (see Braasch, 2001), B. mucronatus (see Braasch, 2001) and B. vallesianus (Gaar et al., 2006). More recently, a survey for Bursaphelenchus species associated with bark- and wood-boring insects in the Czech Republic identified B. pinophilus Brzeski & Baujard, 1997 from the Moravia region. Although this represents a new country record, it was also associated with nematangia on the hind wings of a new insect vector. A total of 404 bark- and wood-boring insects were collected from declining or symptomatic trees and screened for the presence of Bursaphelenchus. Bark and longhorn beetles were captured manually after debarking parts of the trunk displaying symptoms of insect attacks. Longhorn beetle larvae were also collected together with logs cut from the trunk. Logs were kept at room temperature in the laboratory until insect emergence. Each adult insect was individually dissected in water and examined for nematodes. All nematodes resembling dauer juveniles of Bursaphelenchus were collected and identified by molecular characterisation using a region of ribosomal DNA (rDNA) containing the internal transcribed spacer regions ITS1 and ITS2. ITS-RFLP analyses using five restriction enzymes (AluI, HaeIII, HinfI, MspI, RsaI) were performed to generate the species-specific profile according to Burgermeister et al. (2009). Species identification was also confirmed by morphological data after culture of the dauers on Botrytis cinerea Pers. ex Ft., growing in 5% malt extract agar. During this survey, only species belonging to the Curculionidae, subfamily Scolytinae, revealed the presence of nematodes belonging to Bursaphelenchus. Dauers of this genus were found aggregated under the elytra in nematangia formed at the root of the hind wings (Fig. 1). The dauers were identified from 12 individuals of Pityogenes bidentatus (Herbst, 1783) (Coleoptera: Scolytinae) collected under the bark of Pinus sylvestris trunks. Each insect carried ca 10-100 dauers. The ITS-RFLP patterns of the dauers so obtained confirmed the identification of B. pinophilus associated with this insect species. Bursaphelenchus pinophilus has been found mainly in Europe and has been reported from various countries such as Poland (Brzeski & Baujard, 1997), Germany (Braasch, 2001), and Portugal (Penas et al., 2007). The recent detection of this species associated with dead P. koraiensis in Korea (Han et al., 2009) expands its geographical distribution and potential importance. It has been found associated only with Pinus species, but very little is known about the insect vector. The bark beetle, Hylurgus ligniperda, was initially suggested as the insect vector by Pe-nas et al. (2006), although the nematode associated with this insect was later reclassified as B. sexdentati by morphological and molecular analysis (Penas et al., 2007). According to the literature, P. bidentatus has been cited as a vector of Ektaphelenchus sp. (Kakuliya, 1966) in Georgia, and an unidentified nematode species in Spain (Roberston et al., 2008). Interestingly, B. pinophilus was found in the nematangia formed at the root of the hind wings of P. bidentatus. Although this phenomenon is not so common in other Bursaphelenchus species, B. rufipennis has been found recently in such a structure on the hind wings of the insect Dendroctonus rufipennis (Kanzaki et al., 2008). Although other nematode species (e.g., Ektaphelenchus spp.) are frequently found associated within the same nematangia (see Kanzaki et al., 2008), in this particular case, only dauers of B. pinophilus were identified. The association between B. pinophilus and P. bidentatus represents the first report of this biological association and the association with the Scolytinae strengthens the tight and specific links between this group of Bursaphelenchus species and members of the Scolytinae (Ryss et al., 2005).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Aiming to introduce a multiresidue analysis for the trace detection of pesticide residues belonging to organophosphorus and triazine classes from olive oil samples, a new sample preparation methodology comprising the use of a dual layer of “tailor-made” molecularly imprinted polymers (MIPs) SPE for the simultaneous extraction of both pesticides in a single procedure has been attempted. This work has focused on the implementation of a dual MIP-layer SPE procedure (DL-MISPE) encompassing the use of two MIP layers as specific sorbents. In order to achieve higher recovery rates, the amount of MIP layers has been optimized as well as the influence of MIP packaging order. The optimized DL-MISPE approach has been used in the preconcentration of spiked organic olive oil samples with concentrations of dimethoate and terbuthylazine similar to the maximum residue limits and further quantification by HPLC. High recovery rates for dimethoate (95%) and terbuthylazine (94%) have been achieved with good accuracy and precision. Overall, this work constitutes the first attempt on the development of a dual pesticide residue methodology for the trace analysis of pesticide residues based on molecular imprinting technology. Thus, DL-MISPE constitutes a reliable, robust, and sensitive sample preparation methodology that enables preconcentration of the target pesticides in complex olive oil samples, even at levels similar to the maximum residue limits enforced by the legislation.